

LLNL-TR-669183

L
L
N
L
-
X
X
X
X
-
X
X
X
X
X

ZFS on RBODs –
Leveraging RAID
Controllers for Metrics and
Enclosure Management
Marc Stearman

Approved for public release

International Workshop on The Lustre Ecosystem:
Challenges and Opportunities
Annapolis, MD
March 3-4, 2015

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release ii

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security,
LLC, for the U.S. Department of Energy, National Nuclear Security Administration under
Contract DE-AC52-07NA27344.

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release 3

ZFS on RBODs – Leveraging RAID Controllers for
Metrics and Enclosure Management

Marc Stearman
Livermore Computing

Lawrence Livermore National Laboratory
Livermore, CA, USA
stearman2@llnl.gov

ABSTRACT: Traditionally, the Lustre file system has relied on
the ldiskfs file system with reliable RAID (Redundant Array of
Independent Disks) storage underneath. As of Lustre 2.4, ZFS was
added as a backend file system, with built-in software RAID, thereby
removing the need of expensive RAID controllers. ZFS was designed
to work with JBOD (Just a Bunch Of Disks) storage enclosures under
the Solaris Operating System, which provided a rich device
management system. Long time users of the Lustre file system have
relied on the RAID controllers to provide metrics and enclosure
monitoring and management services, with rich APIs and command
line interfaces. This paper will study a hybrid approach using an
advanced full featured RAID enclosure which is presented to the host
as a JBOD, This RBOD (RAIDed Bunch Of Disks) allows ZFS to do
the RAID protection and error correction, while the RAID controller
handles management of the disks and monitors the enclosure. It was
hoped that the value of the RAID controller features would offset the
additional cost, and that performance would not suffer in this mode.
The test results revealed that the hybrid RBOD approach did suffer
reduced performance.

KEYWORDS: Lustre, ZFS, RAID, monitoring, JBOD, RBOD,
metrics

INTRODUCTION
Prior to Lustre 2.4, Lawrence Livermore National

Laboratory (LLNL) operated numerous Lustre file system
clusters with ldiskfs as the backend file system. Ldiskfs is
based off of ext3, a journaled file system, and was the default
file system for most Linux distributions. The ext3 file system
dates back to the early 1990s and was originally a desktop file
system. Ldiskfs, when used on the Lustre MetaData Server
(MDS), would encur long file system check (fsck) times when
problems arose. This led to the exploration of ZFS as an
alternate backend file system for Lustre. ZFS, developed by
Sun Microsystems, was designed to have an online consistency
check (scrub) along with many other features that would be
useful as a backend file system for Lustre. ZFS has been
ported to Linux, and was integrated as a backend file system
for Lustre 2.4 and beyond. Much of this work was performed
by software developers at LLNL, and the ZFS on linux project
can be found at http://zfsonlinux.org/.

Lustre has historically depended on reliable hardware, and
the most commonly used method of protection has been to use

advanced, high-speed RAID controllers to provide redundancy
beneath the backend file systems. ZFS was designed with
RAID style protection integrated into the file system from the
beginning, and therefore prefers to manage drives directly. If
ZFS manages the storage directly, it can detect and repair
inconsistencies. When LLNL first started using ZFS with
Lustre, ZFS was layered on top of RAID controllers to mitigate
risk. LLNL had grown used to the RAID controllers managing
hard drives and disk enclosures, and there was concern that
using a JBOD approach with ZFS we would be failing drives
over aggressively and that we would not be able to detect and
troubleshoot problems as they arose. Our preferred path
forward was to allow ZFS to do the RAID, and not rely on
RAID controllers for data protection.

Over the past decade LLNL has developed a sizeable
infrastructure for monitoring our numerous Lustre file systems’
underlying hardware, and utilized the APIs and command line
interfaces provided by advanced RAID controllers to profile
the I/O traffic. For example, RAID controllers keep track of
SCSI sense codes, key errors, individual disk drive read and
write times, fan speeds, cache performance, I/O request sizes,
queue depth, etc. Moving to a pure JBOD solution with ZFS
would require all new methods of gathering this data. Many
development hours would need to be spent developing tools to
manage the systems, and new procedures would have to be
written to change the way LLNL operates their multiple Lustre
file systems. This paper proposes a hybrid approach that would
allow ZFS to manage the RAID portion and consistency
checking, while continuing to use the RAID controller for
metric gathering and monitoring.

A HYBRID APPROACH
Imagine if you could keep the RAID controller, but rather

than a typical 8+2 RAID6 layout of the drives, you presented
each drive as its own single disk in either a passthrough mode
or as a single drive RAID0. LLNL currently uses NetApp
E5460 RAID enclosures. The E5460 is a 4U enclosure with 60
3TB nearline SAS drives. There are two RAID controllers
with a shared cache and four QDR Infiniband ports on the
back, which we have connected to two Lustre OSS nodes. The
current configuration in production creates six 8+2 RAID6
volumes on the NetApp array. Three of the volumes are

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release 4

presented to each host, which are used to create a zpool. The
hosts are then configured as a Lustre OSS high availability
(HA) failover pair. A hybrid configuration would present sixty
individual drives as single drive RAID0 (striping) volumes,
which will then be used to create the zpool using 10 drives via
RAIDZ2, providing equivalent protection compared to RAID6.
The RAID controller would still be able to monitor the drives,
providing hueristics and performance data, while ZFS would
just see a large number of disk devices. Figure 1 below depicts
the difference between LLNL’s current ZFS configuration and
a potential hybrid apporach.

Figure 1. Current LLNL Production Model on the left,
Hybrid Model on the right.

In the ZFS+RAID6 configuration, each host sees three

72TB volumes (LUNS), which are then striped with ZFS. ZFS
will be able to detect if there is any data corruption in the pool,
but due to the nature of striping, ZFS cannot correct any data
errors. That job is left to the NetApp RAID array. However
in the ZFS+RAIDZ2 configuration, the NetApp is just doing
striping and ZFS now controls the double parity RAID,
meaning it can fix any problems, and rebuild failed drives.

TEST CONFIGURATIONS
To compare the performance and operational management

of RBOD vs. JBOD, two different configurations were used.
The testing was performed in the Hyperion testbed at LLNL
using three NetApp E5500 units with dual enclosures and 120
3TB disk drives of identical make and model. The hosts and
NetApp systems used configuration tunings consistent with
LLNL production systems. Configuration 1, LLNL Production
Model, builds on what LLNL runs in production, using the
high performance RAID controller in the E5500 disk
enclosure. With 120 drives, twelve 8+2 RAID6 LUNs were
created, with six LUNs fronted to each host. ZFS is then used
to create a single vdev, striping over the LUNs in a RAID0
fashion. In this configuration, ZFS can detect data
miscompares, but cannot fix any problems. The RAID
controller in the NetApp is relied up for data integrity. Figure 2

below depicts Configuration 1, modeled after LLNL
Production systems.

Figure 2. Configuration 1, LLNL Production Model

Configuration 2, ZFS Data Protection, is designed to allow

ZFS to not only detect mismatched data, but also to correct any
data miscompares. Rather than create RAID6 volumes on the
NetApp array, 120 single drive RAID0 volumes were created
to present the appearance of a JBOD to the hosts. From the
host perspective, this looked like 120 single disk drives. These
drives were then arranged into zpools creating six vdevs per
host, comprised of ten-drive RAIDZ2 virtual devices (vdevs).
In this configuration, the NetApp RAID controller was not
doing any amount of integrity checking, but it would manage
the health status of the drive, and continue to monitor for
errors. ZFS would be handling the RAID aspect for the
devices and provide data integrity. Configuration 2 is shown in
Figure 3 below.

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release 5

Figure 3. Configuration 2, ZFS Data Protection

Configuration 2, the ZFS Data Protection model was also
tested without the RAID controller, using the same enclosures
as JBOD storage. The host was connected with SAS adapters
rather than Infiniband adapters.

TEST APPROACH
ZFS is a complicated file system with a large number of

features and enchancements that increase the difficulty of
running benchmarks. Many benchmarks are designed to pre-
create a set number of files, and then run a variety of read and
write operations upon those files. This is often useful to see
how fast your hardware can go, but is typically not
representative of a real user-driven workload. In addition, ZFS
has some intelligence built in where it tries to understand and
adapt to a workload and improve I/O by grouping transactions
into groups. ZFS will examine the list of transactions within a
group and if there are multiple write operations to the same file
region, it will throw out the unneeded writes and just do the
last transaction. In this instance, your benchmark may say it

wrote 2GB to the file, but in fact only 1GB was sent to the
storage devices due to writes hitting the same regions of the
file. Also, due to the copy-on-write nature of ZFS, the random
I/O write tests come out similar to the sequential I/O write
tests. On the read side, ZFS has a rather advanced cache, a
varient of the ARC (Adaptive Replacement Cache) algorithm.
This uses RAM for level 1 caching and can use SSDs for a
level 2 cache. Because the ARC aids write performance
disabling it for benchmarking was not considered a reasonable
option. One can see that it is difficult to find ways to defeat the
intelligence of ZFS. For this testing two approaches were
chosen. The main interest was to test a realistic user workload,
in order to simulate what users may expect to get from their
applications. Before that testing could be done, the limits of
the hardware and the ZFS software on top of it needed to be
understood.

The first set of tests run used XDD, reading and writing to
10 files through the posix layer of ZFS. The command used
for the write test is:

/usr/bin/xdd -targets <DEV_LIST> -op write -
blocksize 4096 -reqsize 2048 -runtime 60 -numreqs
1000000 -queuedepth 16 -seek range 13771092032 -seek
random -output ./all-ran-write-2048-4096

and for the reads:
/usr/bin/xdd -targets <DEV_LIST> -op read -

blocksize 4096 -reqsize 2048 -runtime 60 -numreqs
1000000 -queuedepth 16 -seek range 13771092032 -seek
random -output ./all-ran-write-2048-4096

This is a straighforward test using an 8MB buffersize to see
how fast the file system can write and read with a sequential
I/O pattern.

 The second set of tests run used FIO to test the usefulness
of the ZFS cache, and how well it can improve application
performance. This test used the following configuration
parameters:
bssplit=2m/100
rw=randrw
rwmixread=50
direct=0
size=64g
nrfiles=16
ioengine=posixaio
fallocate=none
random_distribution=zipf:1.2
iodepth=32
runtime=600

 This job mix uses a 2MB I/O size for a 50/50 mixed
workload of reads and writes. The I/O used 16 files that were
each 4GB in size, totalling 64GB, which is the size of RAM on
the nodes. The important parameter in this test which shows
the benefits of the ZFS ARC is the random_distribution
parameter. The zipf:1.2 uses the zipf power distribution to
restrict the I/O to a small portion of the files. In this instance
approximately 95% of the I/O will happen in only 4GB out of
the 64GB. This is intended to reflect hot data, and commonly
accessed regions of files. In this instance we expect ZFS to
keep a majority of the data in RAM for the reads, and to
discard a large number of I/O transactions that hit the same
region of the file.

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release 6

 As stated before, the prior two tests were meant to show the
capabilities of the hardware and software, but do not reflect a
real user workload. With ZFS as the backend file system for
Lustre, we do see a mixed workload of reads and writes, but
we typically do not see the case of users rewriting over existing
files. The two main classes of our user jobs are simulation and
analytics. In the simulation case, users will read an initial input
deck and periodically write out a set of restart checkpoints, or
results data. This I/O is always written to new files, and it is
rare that files are read and overwritten. For data analytics, the
users typically have a starting set of data that their application
reads in, and after processing some of the data, a reduced set of
data is written to new files. Again there is very little rewrite
happening. The FIO benchmark was used to simulate this type
of behavior, but with a different workload meant to simulate
what users may actually be doing on the system.

 Designing a workload that simulates user behavior requires
knowing what the users are doing. LLNL uses the RobinHood
package developed by CEA. RobinHood processes the
changelogs on a Lustre file system and stores that information
in a database allowing for fast simple queries of file systems
characteristics. Using RobinHood, a histogram of our file sizes
was generated, showing that 90% of the users’ files were
smaller than 32KB. The average file size, looking simply at
space used divided by total number of files, was approximately
4MB. This indicates that there are a very small number of
large files, and a large number of small files. This information
facilitated the creation of an input file for FIO that could
simulate a large number of small files with a random
workload. The job file was comprised with four write oriented
jobs, and two read oriented jobs. This also appeared to fit with
observed behavoir by watching the output from ltop, an
application packaged with the LMT (Lustre Monitoring Tool).
The six jobs would run in parallel based on the following input
file:
[global]
description=Emulation of User Workloads
direct=0
ioengine=posixaio
fallocate=none
iodepth=32
create_on_open=1

256K BS, Write, 10000*2m = 20GB
[userLoad1]
directory=/mnt/testfs/1
bssplit=256k/100
rw=write
filesize=2m
nrfiles=10000
size=10000m

1M BS, Read, 10000*3m = 30GB
[userLoad2]
directory=/mnt/testfs/2
bssplit=1m/100
rw=read
nrfiles=10000
filesize=3m
create_on_open=0
size=10000m

8K BS, Write, 100000*32k = 3.2GB
[userLoad3]

directory=/mnt/testfs/3
bssplit=8k/100
rw=write
filesize=32k
nrfiles=100000

16K BS, Write, 100000*64k = 6.4GB
[userLoad4]
directory=/mnt/testfs/4
bssplit=16k/100
filesize=64k
nrfiles=100000
rw=write

32K BS, Read, 100000*64k = 6.4GB
[userLoad5]
directory=/mnt/testfs/5
bssplit=32k/100
filesize=64k
nrfiles=100000
rw=read
create_on_open=0

1M BS, RandWrite, 10000*2m = 20GB
[userLoad6]
directory=/mnt/testfs/6
bssplit=1m/100
filesize=2m
rw=randwrite
nrfiles=10000
size=10000m

 The global section specifies that we do not want to use
directio and fallocate, which are not supported for ZFS, and to
use the posixaio engine for the testing. We also want an I/O
queue depth of 32 and when doing the writes, we should create
them upon open. Real user applications are not often
overwriting existing files, rather they create the file upon
opening for writes. For the read tests we have to precreate the
files such that there is something to read from. The six parallel
jobs are as such:

1. Create 10,000 2MB files writing with a 256KB
blocksize, but only write 10GB worth of data.

2. Read a total of 10GB of data from 10,000 3MB files
(30GB) using a blocksize of 1MB.

3. Create 100,000 32KB files using an 8KB blocksize.

4. Create 100,000 64KB files using a 16KB blocksize.

5. Read 100,000 64KB files using a blocksize of 32KB.

6. Create 10,000 2MB files using a 1MB blocksize, but
only write 10GB worth of data. Uses the random
write FIO algorithm.

This set of jobs should defeat the ZFS cache and present a
fairly realistic mix of workloads to provide a fair comparison
of the different hardware configurations.

TESTING RESULTS
The first set of tests run were the XDD tests which can be

seen in Figure 4. All three configurations did relatively well
in the write case, with the JBOD mode being the slowest. The
RAID controller has a significant amount of write cache in the
controller, so as writes occur, the RAID controller can

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release 7

acknowledge the operation as soon as it hits the cache, whereas
in the JBOD case, the host will wait until all 10 drives have
completed their I/O before acknowledging the write. The
RAID controller yields a 30% performance improvement over
the JBOD case for the XDD writes. However the opposite is
true for the read case. The JBOD mode is slightly faster than
the RAID6 mode, but significantly faster than the RBOD 120
LUN mode. In this case the RAID controller is getting in the
way because it has a fixed sector size for the RAID volumes,
even for RAID0.

Figure 4. XDD Results

The RAID controller is doing more work to read the data than
just accessing the disks directly through the JBOD mode. The
variance in read performance in the three RAID modes is due
to the number of top level vdevs in play. The fewer top level
vdevs you have, the less taxing it is on the queue depth of the
RAID controller. It is possible that tuning the queue depths for
each case may improve the results, but the hero numbers were
not our focus so that exercise was left as potential future work.

The results of the initial FIO workload show how useful the
ZFS cache can be to application performance. The graph
shown in Figure 5 dipicts what happens as the cache warms up.

Figure 5. Warming the ZFS cache

This workload yields 5-6 GB/s combined read and writes, but
as you run the same job repeatedly on the same files, the cache
comes into play and throughput of 15-16GB/s can be achieved.

 One of the nice things about using FIO to run multiple jobs
in parallel, is that it provides detailed information about each
job. This includes bandwidth, runtime, and latency statistics.
When designing the mixed workload to simulate what user
applications may be doing, it was helpful to iterate over a
number of different job mixes, and look at the individual
results. Figures 6 and 7 show the per job results for a single
node, depicting the runtime and bandwidth of each of the six
jobs.

Figure 6. Job Runtimes

Figure 7. Job Bandwidths

As expected, the jobs with the larger block sizes (256KB

and 1MB) completed faster with better bandwidth, while the
smaller block size jobs took longer to complete due to smaller
bandwidth. Spinning hard drives have a limited amount of I/O
operations per second, so the smaller I/O block sizes reduce the
apparent bandwidth capabilities of the controller. A file
system that is capable of 80GB/s may only yield 2GB/s when
user applications read and write with small buffer sizes. ZFS
attempts to mitigate this by grouping smaller I/O into larger

ZFS on RBODs – Leveraging RAID Controllers for Metrics and Enclosure Management

Lawrence Livermore National Laboratory Approved for public release 8

streaming I/O, but it is currently limited to 128KB transactions,
which will be split up into 16KB I/Os to the individual drives
in a RAIDZ2 configuration. A large block patch is ready for
testing in the latest branch of ZFS, but was not available during
this testing. Had it been ready, we suspect performance gains
would have been realized in all configurations, thereby
inflating the numbers but not producing a significant difference
in the results. In addition, due to the large amount of data
being written, the ZFS cache was not able to warm up and
come into play. Running this workload multiple times did not
yield better performance.

Comparing the results of the FIO mixed workload amongst
the three configurations revealed some interesting results as
seen in Figure 8.

Figure 8 FIO Mixed Workload.

The LLNL Production Model is 20% faster on writes, similar
to before, and almost double the speed on reads. The NetApp
RAID controller has optimized RAID engines and the
advantage of the write cache. For each block, when ZFS is
managing the RAID calculations, it sends ten I/Os to the disks,
whereas in the LLNL Production RAID6 mode, the host sends
one I/O to the RAID controller, which splits up the data for the
ten drives involved. Since the RAID controller can
acknowledge the I/O once it hits cache, the host can send much
more data down the pipe to the enclosure. The ZFS Data
Protection model is also very sensitive to the drive path
configuration. Each disk has two channels coming out of it,
and the RAID controller has multiple I/O controllers to
maximize disk bandwith. If the drives are not layed out
properly, you can oversubscribe some channels, and not utilize
others. With the RAID controller, you have full control over
which paths are assigned to drives and controllers. In the ZFS
JBOD case, you lose that control and it is likely you may not
be utilizing the drive channels properly. This will certainly
affect maximum performance of the system.

ANALYSIS
This study was undertaken because of the belief that the

hybrid solution would be viable. RAID controllers add
approximately 10% to the cost of the system when all other
parts are the same. That is a pretty good value, considering the
benefits gained:

• Metrics – drive and channel heuristics,
performance counters, drive latencies, etc.

• Monitoring – enclosure services, predictive failure
analysis, rich API, battery status, event logs, etc.

• Firmware – vendors work closely with drive
manufacturers

• Fine tuning of I/O paths

Being able to keep the RAID controllers and let ZFS handle the
RAID seems like the best of both worlds, until you examine
the performance numbers. Since you have now paid the cost of
the RAID controller to reap the benefits, you may as well use it
for what it was designed for, and run the enclosure in RAID6
mode. True, ZFS cannot fix problems, but then again, you are
relying on the RAID controller to do the job for you. You still
get all of the benefits of ZFS, such as compression, online
consitency checking, snapshots, etc. Further research could be
done to see if it is possible to tune the JBOD mode to improve
the performance and bring it equal to the RAID6 mode.
Testing at the Lustre layer may also level the playing field.

SUMMARY
LLNL decided to layer ZFS on top of RAID controllers as a
risk mitigation strategy when adopting ZFS as the backend file
system for Lustre. The intent was to eventually move toward a
JBOD style enclosure and save money by not having to
purchase RAID controllers. Historically, the RAID controllers
were a significant cost component of the storage architecture,
and ZFS was seen as an alternative that would save money. In
addition, because ZFS stores the checksum for the data block
elsewhere on the drive, the RAID implementation appears to
be a superior solution to most hardware RAID controllers.
However, the question of how to manage drives and enclosures
in a JBOD without relying on RAID controllers remained. As
the price of RAID controllers dropped over time, a hybrid
solution appeared to be an excellent path forward, but the
performance of the RBOD mode is lower than expected.
Considering that the RAID6 mode performs best, and the
RAID controller provides the enclosure management features
desired, the risk mitigation strategy of ZFS atop RAID
controllers made three years ago continues to be a good
decision, and is likely to be our path forward for the forseeable
future. Given resources and time, it would be interesting to see
if it is possible to tune the system to improve the ZFS Data
Protection Model in a way that improves the performance
above the LLNL Production Model, but that is outside the
scope of this paper.

